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Abstract. Using the local-density approximation, calculating the Hellmann-Feynman forces and applying
the direct method, the phonon dispersion relations for the rutile-like structure of crystalline SnO2 have
been derived for the first time. The phonon frequencies at the Γ point agree very well with Raman
and infrared data and other phenomenological model calculations. The LO/TO splitting is estimated by
calculating phonons from an elongated supercell. The computations under pressure reveal a soft mode
of B1g symmetry which leads to a ferroelastic phase transition. The pressure-dependence of the lattice
constants and the Grüneisen parameters of the modes are calculated.

PACS. 63.20.-e Phonons in crystal lattices – 71.15.Mb Density functional theory, local density
approximation – 62.50.+p High-pressure and shock-wave effects in solids and liquids

1 Introduction

There is a great degree of interest in the high-pressure
phases of silica SiO2 [1,2], in particular in rutile-type
structure stishovite, due to the possible geophysical reper-
cussions. The stishovite transforms to an orthorhombic
CaCl2-type phase around 100 GPa. The existence of post-
stishovite high-pressure phases of silica would be of sub-
stantial geophysical importance as free silica can coexist
with (Mg, Fe)O in the lowermost mantle [3]. An appro-
priate model compound for stishovite is the rutile-type
SnO2, since in SnO2 a similar phase transition to CaCl2-
type phase occurs at an order of magnitude lower pressure.
This makes SnO2 much more accessible to experiment. In
addition SnO2 semiconducting properties are extensively
used in thin films to provide simultaneously an electrically
conducting and visibly transparent layer.

At ambient pressure SnO2 has a rutile structure
with P42/mnn (D14

4h) symmetry and 6 atoms in the
unit cell [4,5]. Above 11.8 GPa under hydrostatic pres-
sure the rutile-structure SnO2 undergoes a second-order
phase transition to a CaCl2-type phase with Pnnm (D12

2h)
symmetry. At ambient pressure the Raman and infrared
spectra have been measured for a single crystal of SnO2 [6]
and 11 mode frequencies out of 15 have been determined.
Other measurements [7] carried out under pressure up to
0.42 GPa delivered four Raman-active phonon frequencies
and the estimate of the Grüneisen parameters.
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The lattice dynamics of rutile-type structure SnO2 has
been considered several times within phenomenological
approaches. A rigid-ion model with short range central
axially symmetric forces and long range Coulomb forces,
fitted to experimental frequencies, has been considered in
reference [6]. The rigid-ion model was extended to first and
second nearest neighbour central and oxygen-tin-oxygen
bending forces, and the zone-center Γ point modes were
calculated [8]. Then, it proved that the shell model sat-
isfactory reproduces the TiO2 phonon dispersion curves
measured by coherent inelastic neutron scattering [9]. The
shell model for SnO2 was obtained by slightly readjust-
ing the TiO2 parameters in such a way that the best fit
of the measured infrared and Raman frequencies could be
achieved [10]. Later, the shell model was again used [11] in
relation with the analysis of the temperature dependence
of the linewidth of A1g mode in the Raman spectrum of
SnO2.

To deal with ab initio lattice dynamics two approaches
are currently in use: the linear response [12], and the di-
rect method. In the linear response method the dynami-
cal matrix is obtained from the modification of the elec-
tronic density, via the inverse dielectric matrix, resulting
from the phonon displacements of atoms. The dynami-
cal matrix can be determined at any wave vector in the
Brillouin zone, with a computational effort comparable to
a ground-state optimization. Only linear effects, such as
harmonic phonons, are accessible to this technique. The
direct method approach [13–17] is based on the ab ini-
tio pseudopotential plane-wave total energy calculations,
which allows the study of both linear and nonlinear ef-
fects. The computer codes deal with a supercell which
allows explicit account of any perturbation, including
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Table 1. Zero-pressure structural parameters of rutile-type
SnO2.

a [Å] c [Å] x
Present calc. 4.6809 3.1790 0.3056
X-rays [4] 4.7367(1) 3.1855(1) 0.3070(4)
Neutrons [5] 4.7374(1) 3.1864(1) 0.3056(1)

the calculation of the Hellmann-Feynman forces generated
by a displaced atom. In the direct method these forces are
used to derive the force constants, dynamical matrix and
phonon frequencies.

In this note we present the ab initio calculations of
the structure and lattice dynamics of rutile-type SnO2.
Such calculations are even more important, since neither
the ab initio study has been made, nor the phonon dis-
persion relations have been measured. Moreover, in the
rutile-like phase of GeO2 the B1g mode has been shown
to be soft [18]. The present ab initio calculations are un-
dertaken to search for similar B1g pressure-dependent soft
mode in SnO2. The first-principle pseudopotential calcu-
lations within the local-density approximation, but for an-
other rutile-like structure, namely for stishovite SiO2, have
been carried on in reference [19]. There only the Γ point
transverse optic modes of SiO2 were determined as func-
tions of pressure. It was also shown that the phase transi-
tion from rutile-like to CaCl2-type structure is associated
with an elastic instability of B1g symmetry.

2 Method

The ab initio calculations for SnO2 are performed
using the pseudopotential method within the local-
density approximation (LDA) as implemented in VASP
package [20,21], and with the ultrasoft pseudopotentials
provided with VASP. The pseudopotentials for Sn and O
atoms are representing s2p2f0, and s2p4d0 electron config-
urations, respectively. We have used supercells of 1×1×1,
2 × 2 × 2, and 1 × 1 × 8 sizes with 6, 48 and 48 atoms,
respectively. With the 1 × 1 × 1 supercell the pressure
dependence of phonon mode frequencies at the Γ point
are calculated. The 2 × 2 × 2 supercell is used to derive
phonon dispersion relations. The 1×1×8 supercell allows
us to estimate the longitudinal optical A2u(LO) mode fre-
quency. A plane-wave basis set with 400 eV cutoff is used
to expand the electronic wave functions at special k points
generated by 4 × 4× 4, 2× 2 × 2, 4× 4 × 1, Monkhurst-
Pack k meshes, for mentioned supercells, respectively. The
unit cell parameters of the optimized zero-pressure rutile
structure of SnO2 are shown in Table 1. They are in usual
agreement with experiments [4,5].

The phonons are determined by the direct method [22]
using optimized 2×2×2 supercell. For that the Hellmann-
Feynman forces are computed for four independent dis-
placements, two along x and two along z for Sn and O
atoms as required by the tetragonal symmetry. The dis-
placement amplitude is 0.5% of the lattice constant in
a given direction. To minimize anharmonic effects, we
make positive and negative displacements about equi-
librium positions. All displaced configurations generate

Fig. 1. Phonon dispersion relations of the rutile-like phase
of SnO2 calculated from 2 × 2 × 2 supercell. Squares denote
phonon frequencies found from 1× 1× 8 supercell.

4×3×48 = 576 components of Hellmann-Feynman forces.
Next, the symmetry of the force constants, following from
P42/mnn space group, is established and 165 independent
parameters of so-called cummulant force constants [17,23],
belonging to 34 coordination shells, are fitted to the col-
lected Hellmann-Feynman forces by the singular value de-
composition method, which simultaneously provides the
least-square solution.

The magnitude of the force constants diminishes with
distance between the atoms involved. The largest ones are
the on-site force constants (zero distance). At 3.179 Å,
which is the shortest distance from the central atom of
the supercell to the surface along [0, 0, 1] direction, the
largest element of the force constant is about 15 times
smaller than the on-site force constants. At 4.737 Å along
[1, 0, 0] direction this factor increases to 20 times, while
at the corner along [1, 1, 1] direction the force constants
diminish by a factor of about 300.

The force constants are used to construct the dy-
namical matrix, to diagonalize it and to find phonon
frequencies. According to the direct method the tetrag-
onal 2× 2× 2 supercell provides correct phonon frequen-
cies, independent of the range of interaction, at the Γ
(0, 0, 0) (except for longitudinal optic (LO) infrared active
modes), X(1

2 , 0, 0), Z(0, 0, 1
2 ), M(1

2 ,
1
2 , 0), R(1

2 , 0,
1
2 ) and

A(1
2 ,

1
2 ,

1
2 ) special points of the simple tetragonal Brillouin

zone. Since the magnitude of the force constants decreases
out relatively fast within the supercell range, the phonon
branches, being an interpolation between special points Γ ,
X , Z, M , R, A, should be relatively well reproduced.

3 Phonon dispersion relations

The calculated dispersion curves at zero pressure are dis-
played in Figure 1. The phonon frequencies at the Γ
point are compared in Table 2 with experimental data and
phenomenological model calculations, and the agreement
is very good. A somewhat lower accuracy of A2u(LO),
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Table 2. Comparison of the mode frequencies at the Γ point for SnO2. Frequencies are in THz.

Mode Present calc. Expt. [6] Expt. [7] Calc. [6] Calc. [8] Calc. [10] Calc. [11]
A1g 19.13 19.13 19.10 19.37 18.84 20.30 19.17
A2g 10.98 - - 11.95 14.64 - -
B1g 3.14 - 3.63 3.00 3.68 5.52 3.80
B2g 22.84 23.45 23.41 22.54 23.03 23.35 22.81
Eg 14.08 14.27 14.27 13.22 14.93 14.27 13.53

B
(1)
1u 4.40 - - 4.20 4.48 - -

B
(2)
1u 17.54 - - 15.14 18.09 - -

A2u(TO) 13.82 14.30 - 15.35 14.30 14.00 15.39

E
(1)
u (TO) 7.24 7.32 - 7.08 6.98 7.08 7.43

E
(2)
u (TO) 8.57 8.78 - 8.90 9.14 9.32 10.14

E
(3)
u (TO) 18.43 18.53 - 19.52 19.41 16.82 19.82

A2u(LO) 19.70 21.13 - 20.60 21.09 21.29 19.68

E
(1)
u (LO) 8.36 8.27 - 8.03 7.40 8.69 7.43

E
(2)
u (LO) 12.18 10.97 - 11.30 14.32 12.11 12.77

E
(3)
u (LO) 21.09 23.08 - 22.48 22.12 21.20 19.82

Table 3. Calculated mode frequencies at the X, M , Z, R, and
A points in the Brillouin zone. All modes are doubly degener-
ate. Frequencies are in THz.

X M Z R A
3.37 2.62 4.16 3.85 2.68
4.68 3.60 5.72 5.13 6.21
5.93 6.61 7.67 7.37 6.89
7.26 7.18 8.04 7.63 7.85

10.54 11.00 8.80 9.73 9.05
13.64 14.22 16.58 14.87 14.45
15.94 15.54 17.82 16.23 16.92
18.34 18.56 17.91 19.08 17.77
22.77 22.41 21.24 21.62 21.73

E(2)
u (LO) E(3)

u (LO) might be caused by the method of es-
timating the LO/TO splitting described below. Neverthe-
less, the overall agreement of the calculated frequencies
(4.2%) at Γ point with experimental data [6,7] is of the
same order as those obtained by the rigid-ions (4.8%) [6],
(5.0%) [8], and shell model calculations (7.0%) [10] and
(7.9%) [11]. In Table 3 are collected phonon frequencies
at all high-symmetry points in the Brillouin zone, namely
at X , Z, M , R, A.

The interaction of tin and oxygen ions with the macro-
scopic electric field leads to LO/TO splitting of infrared
active modes. The direct method with a 2×2×2 supercell
allows us to calculate only TO modes. The LO modes can
be extracted from the elongated supercell using the direct
method as well [24]. For that we build a 1×1×8 supercell
elongated in the z-direction with 48 atoms, calculate the
Hellmann-Feynman forces for x and z displacements of Sn
and O atoms, and derive the dispersion curves along the
Γ–Z direction. This supercell provides correct phonons at
four wave vectors: (0, 0, 1

8 ), (0, 0, 1
4 ), (0, 0, 3

8 ), Z (0, 0, 1
2 ).

They are shown in Figure 1. We use these four points to
extrapolate the LO branch to the Γ point, where we find
the frequency of the A2u(LO) mode to be 19.70 THz.

The LO modes at Γ point depend on the non-
analytical term [25] which in turn depends on effective
charge tensors Z∗ and the electronic part of the dielec-
tric constant ε∞. The non-analytical term has to be
added to the dynamical matrix derived by the direct
method. We assume that the effective charge tensor can
be approximated by the point charge Z∗. From the fre-
quency 19.70 THz of the A2u(LO) mode we find the val-
ues of the effective charges as Z∗(Sn)/

√
ε∞ = 1.98 and

Z∗(O)/
√
ε∞ = −0.99. In reference [6] the values 1.96 and

−0.98 are given, respectively, which are found by fitting
the rigid ion model to experimental data. Our point effec-
tive charges are used to compute frequencies of Eu(LO)
modes and the results are shown in Figure 1 and given in
Table 2.

4 Phonon modes under pressure

The ab initio calculations are carried out also at high pres-
sures. The 1 × 1 × 1 supercell of SnO2 is optimized, and
the phonons at the Γ point are calculated at several pres-
sures up to 10.0 GPa. In this interval the lattice param-
eters, the unit cell ratio c/a and volume V change lin-
early. These quantities are shown in Figure 2 and they
perfectly agree with the experimental data of reference [4]
taken at the compression and decompression. In particu-
lar, the present calculations and data of reference [4] show
that c/a ratio increases with increasing pressure, contrary
to measurements of reference [7], which predicts that c/a
ratio should decrease. Linear pressure dependence of al-
most all phonon modes is found, and hence the Grüneisen
parameters νi = − (∂ lnωi/∂ lnV ) |T=0 are computed
and listed in Table 4, and compared with experimental
data [7]. Generally, the mode frequency increases with
pressure, except for slight decrease of E(1)

u (TO) mode, and
real softening of B1g mode (Fig. 3). The essential part
of the phonon dispersion relations along Γ–M direction,
which includes the B1g soft mode and the acoustic modes,
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Fig. 2. Pressure dependence (lines) of a and c tetragonal lat-
tice constants, c/a ratio and V unit cell volume of rutile-like
structure of SnO2. Experimental points are taken from refer-
ence [2].

Table 4. Grüneisen parameters νi of the modes.

Mode Present calc. Expt.[7] Mode Present calc.

A1g 1.33 3.64 B
(2)
1u 1.56

A2g 0.63 - A2u(TO) 1.32

B1g −14.17 −10.44 E
(1)
u (TO) −0.61

B2g 1.49 2.58 E
(2)
u (TO) 1.14

Eg 1.29 3.20 E
(3)
u (TO) 1.91

B
(2)
1u 0.26 - - -

is shown in Figure 3a for two pressures. Beyond the Γ
point the B1g soft mode branch interacts with the trans-
verse acoustic (TA) mode and causes that part of the TA
branch close to Γ point becomes imaginary (negative in
Fig. 3a). The minimum of the TA branch occurs along
the Γ–M direction. This destabilizes the tetragonal crys-
tal and leads, through the ferroelastic phase transition,
to the orthorhombic CaCl2-type phase. The instability of
the TA mode occurs around 7.0 GPa which is lower than
the value of 11.8 GPa found experimentally at ambient
temperature.

5 Conclusions

In conclusion we have calculated the ab initio lattice dy-
namics of rutile-type structure of SnO2. The LO mode
was found from extrapolation of the k → 0 of the optic
phonon branch restored with elongated supercell. Calcu-
lations under pressure revealed a soft mode of B1g sym-
metry which leads to the ferroelastic phase transition ac-
companied by softening of the transverse acoustic mode
propagating along the [1, 1, 0] direction.
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Fig. 3. (a) Phonon dispersion relations along Γ–M direction
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the transverse acoustic branch. (b) Pressure-dependence of the
B1g soft mode.
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